Dansende deeltjes (deel 1)

avogadro_amedeoEen van onze vaste lezeressen vroeg zich af wat een mol is, en waar het getal van Avogadro vandaan komt.

Het is altijd goed om je af te vragen waar kennis vandaan komt. Hoe zijn we dingen, die nu voor ons heel normaal zijn, ooit te weten gekomen? Hoe zou je als 19e eeuwse chemicus kunnen aantonen dat water H2O is en geen HO of H2O2? Waarom weten we dat er twee waterstofatomen in een water molecuul zitten? Hoe weten we eigenlijk hoeveel atomen er in een bepaald volume of bepaalde massa zitten?

De constante van Avogadro heb je nodig als je wilt weten hoeveel moleculen (of atomen) er in m gram stof zitten. Er is afgesproken dat er in exact 12 gram koolstof precies één mol koolstof atomen zitten. Een mol koolstof is dus net zoiets als een dozijn, gros of krat bier. Alleen wéét je dat er in een krat bier 24 flesjes zitten. Maar hoeveel atomen er in een mol zouden zitten, wist men lange tijd niet. Deze hoeveelheid (het aantal atomen in exact 1 mol) zou men later de constante van Avogadro noemen en werd pas bepaald rond 1909. Maar hoe?

In deze mini-serie worden in de eerste twee delen twee manieren beschreven die men in die tijd heeft uitgevoerd en in het laatste deel zal worden uitgelegd hoe dat tegenwoordig gaat. Verder lezen Dansende deeltjes (deel 1)

Ferrofluids pt. 2

Porno voor chemici. Herinneren jullie je dit bericht over ferrofluids nog? Wanneer je een (goede) ferrofluid op een glazen schaaltje doet en er een magneet onder houdt, ontstaan er spikes op de vloeistof. Op die plekken richt de vloeistof zich uit langs de magnetische veldlijnen. Dat resulteerde in onderstaande foto’s die we jullie niet willen onthouden. Klik voor groot!

img_6055img_6065img_6068

Voor meer plaatjes (elektronenmicroscopie plaatjes onder ‘TEM’)’ en informatie hoe de masterclass gegaan is, kijk op deze site.

Over water lopen? Het kan!

Er bestaan waterdiertjes – zoals de vijverloper – die letterlijk op water kunnen staan. Dit danken zij aan de oppervlaktespanning van water. Ons mensen lukt dat niet: daarvoor zijn we te zwaar. In de winter kun je, als het een tijdje stevig vriest, wél over water lopen of schaatsen. Maar dat is natuurlijk flauw, want ijs is geen vloeistof.

Wat wel kan is lopen over een mengsel van maïzena (maiszetmeel) en water. Dit mengsel is een niet-Newtoniaanse vloeistof. Dit betekent dat de stroperigheid (met een duur woord viscositeit) afhangt van de kracht die je op zo’n vloeistof uitoefent. Ook de snelheid waarmee je die kracht uitoefent, maakt uit. Er bestaan vloeistoffen waarbij de viscositeit toeneemt bij grotere krachten, maar ook waarbij die afneemt. Bij het mengsel van maïzena en water neemt de viscositeit enorm toe als je snel een grote kracht uitoefent. Sla je dus hard op zo’n mengsel, dan wordt het oppervlak hard en veert je hand terug. Je kunt er zelfs overheen lopen.

Wanneer, zoals bij maïzena, de viscositeit hoger wordt als je een kracht uitoefent, noemen we dit shear thickening. Gebeurt het omgekeerde en wordt de vloeistof minder stroperig, dan heet dat shear thinning. (Een correcte Nederlandse vertaling voor deze benamingen heb ik helaas niet kunnen vinden.)

Shear thinning wordt in de praktijk heel veel gebruikt. Neem bijvoorbeeld verf. Dat wil je gemakkelijk kunnen roeren en gemakkelijk op de muur kunnen aanbrengen. Maar als het eenmaal op de muur zit, mag het er niet vanaf druipen. Verf heeft dus, in stilstand, een hele hoge viscositeit. Ga je krachten uitoefenen, dan wordt het een stuk minder stroperig. Ook ketchup, mayonaise, haargel, tandpasta en bloed zijn voorbeelden van producten waarbij het erg prettig is dat ze deze eigenschap hebben.

Ook shear thickening kun je zelf ervaren. Niet alleen kun je maïzena met water mengen, er bestaat ook speelgoed in de vorm van Silly Putty. Dit stuitert als je het laat vallen en breekt als je er stevig aan trekt. Je kunt het echter ook in allerlei vormen kneden. Silly Putty kun je kopen, maar het is natuurlijk veel leuker om het zelf te maken!

Vloeibare magneet?

IJzer, nikkel en kobalt blijven plakken aan een magneet. We zeggen dat ijzer, nikkel en kobalt ‘ferromagnetische materialen’ zijn. Magnetisch zoals ijzer. De atomen in magnetische materialen zijn allemaal kleine magneetjes die we ‘magnetische dipolen’ noemen. Bij ferromagneten zijn deze elementaire magneetjes uitgelijnd in magnetische domeintjes. Binnen zo’n magnetisch domein staan alle elementaire magneetjes dezelfde kant op. In de afbeelding is een dipool getekend als een pijltje en een domeintje als een groepje pijltjes die dezelfde kant op wijzen. Gewoonlijk wijzen de domeinen een willekeurige kant op en heffen elkaars magnetische werking op. IJzer is daardoor geen permanente magneet.

ferromagnetisme_2

Wanneer je een magneet bij een stuk ijzer houdt, richten de magnetische dipolen in verschillende domeinen zich allemaal wél uit in dezelfde richting. Daardoor ontstaat er een sterk magneetveld in het stuk ijzer: het ijzer wordt magnetisch en wordt aangetrokken tot de magneet. De magneet trekt het ijzer aan, daardoor wordt het ijzer ook magnetisch en trekt het de magneet weer aan.

Maar wat gebeurt er wanneer je ijzer smelt en het bij een magneet houdt. Helemaal niets. IJzer verliest zijn ferromagnetische eigenschappen rond de 800 ºC, maar smelt pas boven de 1500 ºC. Dat geldt helaas ook voor nikkel, kobalt en andere magnetische materialen zoals magnetiet (Fe3O4) of maghemiet (γ-Fe2O3). Echte vloeibare magneten bestaan dus niet. Super jammer.

Maar scheikundigen zijn niet voor één gat te vangen. Een zogeheten ‘ferrofluid’ komt goed in de buurt van een vloeibare magneet. Een ferrofluid is een dispersie (oplossing van vaste deeltjes) van magnetische nanodeeltjes in een vloeistof. Deze nanodeeltjes (van bijvoorbeeld maghemiet) zijn ongeveer 10 nm groot en bevatten maar één enkel magnetisch domein. Ze zijn daardoor permanent magnetisch. Een magneet in de buurt van een ferrofluid zal de magnetische nanodeeltjes aantrekken en de vloeistof blijft tussen de nanodeeltjes plakken.

Om je een idee te geven van hoe klein deze nanodeeltjes zijn: de mensenhaar hieronder is ongeveer 0.05 mm (50 µm) dik. De bolletjes zijn SiO2-colloiden van ongeveer 0.001 mm (1 µm). De maghemiet nanodeeltjes zijn nog een factor 100 kleiner (10 nm, 0.01 µm of 0.00001 mm).

haar_2

img_5957_2Er zijn allemaal wilde ideeën voor toepassingen van ferrofluids, waar we natuurlijk uren over zouden kunnen praten. Wat ik wél de moeite waard vind om te laten zien is dit kunstwerk van Sachiko Kodama. Het bestaat uit twee kegels en een bak met ferrofluid. De kegels zijn elektromagneten en op die manier zijn de ferrofluids te manipuleren.

Ben je nou benieuwd naar hoe je een ferrofluid kan maken en zit je nog op de middelbare school? (Pas op, nu volgt sluipreclame!) Dan kan je naar de website van de Universiteit Utrecht gaan om je aan te melden voor een masterclass colloïdchemie. Je leert in een kort weekeind over colloïden, ferrofluids, hoe het is om te studeren en er is een practicum.

Check je later!

Mark

NB: Haar en foto zijn eigendom van dr. Ben Erné van de vakgroep Fysische en Colloid Chemie van de Universiteit Utrecht.