Chemische 1 april-grappen

Op de eerste dag van april ben ik altijd een beetje chagrijnig. Ik houd helemaal niet van flauwe grappen, maar toch kan ik er niet aan ontkomen. Een goeie grap kan ik zeker waarderen, maar helaas komt dat niet zo vaak voor.

Wat zijn dan de echt goeie grappen? Wat zijn nou goeie scheikunde-pranks? De Chemistry Blog maakte een korte opsomming:

  • De galliumlepel
    Gallium is een wat vreemd metaal: het heeft een smeltpunt van 30°C. Dat betekent dat het bij kamertemperatuur gewoon een vaste stof is, maar dat je het in je handen kunt laten smelten. Of in warm water. Deze grap werkt zo: koop een lepelmal, giet die vol met gallium en bied iemand de zelfgegoten lepel aan om zijn/haar thee mee te roeren. Let op: gallium kan giftig zijn, dus eet/drink het niet op. Nogmaals: de thee is hierna niet meer drinkbaar!

  • Explosieve ketchup
    We weten sinds dit filmpje dat (azijn)zuur en baksoda (E500) extreem kan schuimen. Dit kun je — met wat rode (voedings)kleurstof — prima gebruiken om een vulkaanuitbarsting na te spelen, maar je kan er ook andere rode dingen mee laten uitbarsten. Een ketchupfles bijvoorbeeld. Er zit namelijk een serieuze hoeveelheid azijnzuur in ketchup (1–2%). Voor de duidelijkheid: 

    \ce{HCO3- + CH3COOH -> H2O + CO2 + CH3COO-}

    Let op dat de druk die opgebouwd wordt erg snel groot wordt, dus dat er maar een kleine hoeveelheid baksoda nodig is voor een flinke uitbarsting.

  • Brandend geld
    Dit is een bekende truc. Als je papiergeld wil laten branden, zonder dat het vergaat, doop je het in een half-om-half oplossing van water en ethanol. Als je het dan aansteekt, brandt de ethanol, en niet het papier(geld). Om het nog extra spectaculair te maken, kun je wat keukenzout aan de ethanol-water oplossing toevoegen, om de kleur van de vlam van blauw naar oranje/geel te veranderen. Als brandbare stof gebruik je natuurlijk een alcohol, dus in plaats van ethanol kun je, zoals in dit filmpje, ook spiritus of isopropanol gebruiken.

  • De vergruisde rat
    Deze laatste grap is te morbide om werkelijk uit te voeren en ik denk dat er op YouTube dan ook geen filmpjes van zijn. Er wordt gezegd dat de mensen die dit grapje uithalen, een speciaal plekje in de scheikundehel krijgen. De grap werkt als volgt: je kent de truc van de vergruisde roos? Neem wat vloeibaar stikstof, dompel een roos of een appelpartje lang genoeg in het stikstof en sla het daarna stuk met een hamer. De roos of het appelpartje zal vergruist uit elkaar spatten. Stel je nu hetzelfde voor met een rat.

Zwaartekracht bestaat niet

Naast scheikunde, zijn wij, de Scheikundejongens, ook erg geïnteresseerd in andere vakgebieden. Om te beginnen is het de mens die het verschil tussen schei-, natuur- en wiskunde heeft bedacht. Er is natuurlijk maar één natuur, waarin wij deelgebieden hebben gemaakt om een beetje overzicht te houden. Daarnaast kun je met bepaalde dingen uit het ene deelgebied ook hele gave dingen doen in een ander deelgebied. Ik werk nu in een laboratorium waarin natuurkundigen met DNA onderzoek doen naar zelf-assemblage. Heel veel meer overlap dan dit, vind je niet.

Maar goed, omdat we dus van andere vakgebieden houden, schrijven we ook wel eens graag over onderwerpen die maar in de verte te maken hebben met scheikunde. Ik schreef al eerder over prof. Erik Verlinde en zwaartekracht.

Waar ik jullie vanochtend op wil wijzen, is een verzameling Nederlandstalige presentaties van Studium Generale op de website van de TU/Delft. Zoals je in bovenstaande afbeelding misschien wel kunt zien, zit er een presentatie tussen van prof. Verlinde over zijn nieuwe theorie over zwaartekracht. Vooral voor middelbare scholieren die zich afvragen hoe het is om een hoorcollege te krijgen: dit lijkt er verdacht veel op (al is de stof wel luchtig). De meeste lezingen door Studium Generale zijn voor een algemeen publiek, al willen de sprekers nog wel eens wat dieper op de stof in gaan. Voor een lezing van anderhalf uur is dat misschien wat pittig, maar zo op Internet kun je het je nog eens gemakkelijk maken en wat terug luisteren.

De volgende lezingen op de site van de TU/Delft wil ik jullie zeker aanraden:

In de commentaren hieronder horen we natuurlijk graag wat jullie van deze lezingen vinden.

Nieuw imago van de scheikunde: Het Ontstaan van Het Leven

Om duidelijk te maken waarom een vakgebied belangrijk is, is het behulpzaam om een “Het Belangrijkste Onopgeloste Probleem” en een “Het Belangrijkste Opgeloste Probleem” te hebben. Die problemen zouden voor iedereen te begrijpen moeten zijn. Ik denk dat het Belangrijkste Onopgeloste in de natuurkunde The Big Bang is (wat gebeurde er de eerste seconde in het heelal?); het Belangrijkste Opgeloste in de biologie is The Origin of Species (hoe differentiëren soorten zich?) en de wiskundigen hebben de priemgetallen.

Het ultieme toonbeeld van de chemie van tegenwoordig is het periodiek systeem der elementen. Je zou kunnen zeggen dat dit het Belangrijkste Opgeloste probleem is. Iedere rechtgeaarde chemicus voelt zich min of meer aangetrokken tot de elementen en het is het ultieme overzicht van de chemie. Maar dat is maar lastig te begrijpen voor niet-chemici. De man op de straat heeft natuurlijk helemaal niks te maken met zuivere elementen. Hoe vaak worden de begrippen ‘lucht’ en ‘zuurstof’ wel niet door elkaar gehaald? En wie weet nou de voordelen van van een periodiek systeem in deze vorm op te noemen, boven andere soorten systemen?

Als Ultiem Probleem zou ik graag het volgende willen promoten: het ontstaan van het leven.

Stanley Miller in 1953, werkt hier aan het Urey--Miller experiment.

Een van de beroemdere pogingen om te begrijpen waar het ontstaan van het leven om draait, is het Urey–Miller experiment. Daarin is gekeken of de bouwstenen die nodig zijn voor leven, spontaan kunnen ontstaan bij bepaalde omstandigheden (zoals luchtvochtigheid, zuurgraad, etc.). Urey en Miller verwarmden water, methaan, ammonia en waterstofgas in een gesloten systeem, leidden dat door een buizensysteempje, lieten bliksem (stroomschokjes) door het gasmengsel en lieten dat weer neerslaan. Na een week werd de “oersoep” bekeken en er werden onder andere aminozuren, suikers, bouwstenen voor nucleïnezuren (DNA en RNA) en glycerine gevonden. Een her-analyse van hun bevindingen in 2008 toonde aan dat ze 22 verschillende aminozuren hebben geproduceerd. Met een vrij simpele scheikundige opstelling zijn de bouwstenen voor leven gemaakt.

Terug naar de Ultieme Vragen. Wat de precieze omstandigheden waren, toen leven ontstond, is natuurlijk praktisch niet te achterhalen. Maar wat wel te achterhalen is, zijn alle mechanismen die nodig zijn om leven te maken. Om aminozuren en suikers te maken uit water, methaan en ammonia (etc.) is nogal wat organische chemie nodig. Om van vetzuren mooie cellen te maken, is veel fysische chemie nodig (zelf-assemblage). En om te begrijpen hoe zoveel elektriciteit zoveel reacties kan laten verlopen, is anorganische chemie nodig. De rol voor biochemici is natuurlijk duidelijk (bijv. hoe vormden de eerste enzymen?). Het onderzoek naar alles wat om dit vraagstuk heen zit, is natuurlijk veel interessanter dan het uiteindelijke antwoord. De reis is belangrijker dan de spreekwoordelijke bestemming.

Natuurlijk zijn er ook nadelen aan dit verhaal. Veel mensen zullen natuurlijk denken dat dit een biologisch probleem is. Ik denk dat de basale vragen in dit Probleem bijna allemaal chemisch van aard zijn. Op het moment dat er cellen gevormd zijn, is er namelijk leven, en dan begint de evolutie. Dat is dan wel weer harde biologie: het ontwikkelen van soorten. Maar totdat de kleinste eenheid van leven (de cel) er niet is, is er geen biologie.

Een ander groot nadeel aan deze promotie heeft ook te maken met de biologie. Niet alle godsdiensten zijn zo gecharmeerd van de evolutietheorie. Zo hoeft — als Het Ontstaan van Het Leven aangenomen wordt als toonbeeld van de chemie — geen steun van een aantal godsdiensten te verwachten. Natuurlijk is het een discussie op zich waard, of kerk en wetenschap zo goed samen gaan, maar misschien kan ik het daar beter een andere keer over hebben.

Ik ben ervan overtuigd dat Het Ontstaan van Het Leven een goed verhaal is, vergelijkbaar met de oerknal en de evolutietheorie. Helaas is de relevantie niet zo duidelijk als in onderzoek naar medicijnen, en blijft Het Ontstaan van Het Leven voor een lange tijd een Onopgelost Probleem, maar in ieder geval is het veel beter te begrijpen het periodiek systeem der elementen.

Meer: de voordelen door The Curious Wavefunction; de nadelen door Everyday Scientist.

Over de Bunsenbrander

Vorige week donderdag was de 200ste geboortedag van de Duitse scheikundige Robert Bunsen (1811–1899). Zelfs Google vierde dat met een speciale Google Doodle. Chemici kennen Bunsen voornamelijk van de brander die zijn labassistent en hij uitvonden. Zelfs nu wordt die soort branders nog op menig laboratorium gebruikt om reactiemengsels te verwarmen, glaswerk te steriliseren of glas zacht genoeg te maken om het te kunnen bewerken.

De bunsenbrander werkt eenvoudig: door een rechtopstaand metalen koker wordt (meestal) methaangas gestuwd, dat bovenaan verbrand. Onderaan de koker zitten een aantal gaatjes waarmee lucht bijgemengd kan worden. Hierdoor komt er meer of minder zuurstof in het gasmengsel en wordt het methaan onvolledig of volledig verbrand. De onvolledige verbranding geeft een gele vlam van gloeiende roetdeeltjes; de volledige verbranding geeft een ruisende blauwe vlam. De blauwe vlam bestaat uit twee delen: een buitenste, lichtblauwe vlam en een binnenste donkerder blauwe vlam. Het heetste gedeelte van de vlam is het topje van de binnenste blauwe vlam, het minst hete gedeelte de rest van de binnenste blauwe vlam.

Iedere rechtgeaarde chemicus kent Bunsen natuurlijk van zijn bunsenbrander, maar wat niet veel mensen weten, is dat hij indrukwekkend onderzoek heeft verricht naar de het licht dat bepaalde elementen uitzenden door verwarming. Als een zuiver element verwarmd wordt, nemen de atomen in het materiaal beetjes warmte op. Na een tijdje kunnen die atomen die warmte weer los laten. Omdat atomen maar hele strikte hoeveelheden warmte op kunnen nemen, kunnen ze ook maar diezelfde hoeveelheden warmte los laten. Die energieën kunnen we zien als uitgezonden licht. Vroeger op de middelbare school had ik een zwart/wit BINAS, met maar een paar kleurenpagina’s. Een aantal van die kleurenpagina’s gingen over de speciale energieën (kleuren licht) die atomen op konden nemen en los konden laten: emissie en absorptie spectra.

Door zijn onderzoek naar die spectra, ontdekte Bunsen samen met zijn collega Gustav Kirchhoff, de elementen rubidium en cesium. Die laatste kennen jullie vast wel. Als je namelijk een brokje cesium in water gooit, reageert het heftig. De video van de Periodic Table of Videos (PToV) hierover is zeker de moeite waard. Een andere video van de PToV gaat over Robert Bunsen:

Tot slot: het verhaal gaat dat Robert bij zijn geboorte 200 gram woog, en dat “zijn luchtpijp dicht zat.”