Profielwerkstuk onderwerpen

We kregen de vraag “wat is nou een leuk onderwerp voor een profielwerkstuk over scheikunde?” Natuurlijk zijn wij de beroerdste niet, dus hier een lijstje met leuke experimenten — dat vinden wij in ieder geval — waar goed een profielwerkstuk omheen te bouwen is.

Synthese (maken)

Hoewel bovenstaande onderwerpen onder “maken” staan, betekent dat niet dat je helemaal niets hoeft te meten. Als je iets hebt gemaakt, wil je daarna ook weten hoe zuiver het is. Denk bijvoorbeeld aan analyses met infraroodspectroscopie, gaschromatografie, dunnelaagchromatografie of NMR.

Analyse (meten)

  • Oppervlaktespanning / kritische micel concentratie bepalen (denk ook aan dingen als zeep, teflon, speciale planten)
  • Chemiluminescentie: werking van luminol, katalysatoren hiervoor vergelijken
  • Bepalen aspartaamgehalte in frisdranken
  • Bepalen cafeïnegehalte in koffie, thee, cola, …
  • Bepalen theobromine/cafeïne in chocolade
  • Bepalen alcoholgehalte in zelfgebrouwen bier (of wijn)
  • Bepalen ijzer-, chroom-, aluminium-, koper-, nikkel-, calcium-, magnesium-, natriumgehaltes, etc in voeding, staal of leidingwater
  • Bepalen fosforzuurconcentratie in cola, fanta en andere dranken
  • Aantasting van tanden door cola of andere zure dranken
  • Bepalen nicotinegehalte in sigaretten(rook) of nicotinekauwgom
  • Bepalen capsaïcinegehalte in verschillende soorten rode peper
  • Bepalen kininegehalte in tonic
  • Bepalen fluoridegehalte in tandpasta
  • Maken van/onderzoek naar zonnebrandcreme
  • Kleuren in vuurwerk
  • Viscositeit

Bepalingen van biologisch actieve stoffen zoals cafeïne of aspartaam kun je ook goed combineren met een onderzoek naar de werking/bijwerkingen ervan, bijvoorbeeld als je je profielwerkstuk zowel over scheikunde als biologie doet. Dat geldt ook voor de synthese van pijnstillers.

Er zijn ook dingen die je vooral niet moet doen:

  • ‘Onderzoek naar DNA’: te algemeen en te lastig
  • ‘Onderzoek naar kanker’: idem
  • Ingewikkelde (meerstaps) syntheses
  • Onderzoek naar explosieven
  • Het Miller-Urey experiment
  • Onderzoek naar stamcellen

Zorg dat je jezelf gerichte vragen stelt. Een vraag zoals “wat zijn de effecten van feromonen?’’ is te algemeen. Het aantal feromonen is te groot om op te noemen, en ze hebben allemaal verschillende effecten. Hoe kun je zo’n vraag dan ooit beantwoorden?

Tot slot: wanneer je er niet uit komt, je toffe experiment niet op school kunt uitvoeren of je een analyse niet op school kunt doen, neem contact op met de profielwerkstukken hulp Scheikunde aan de Universiteit Utrecht of check google voor een universiteit in de buurt. Ze helpen graag!

edit: omdat dit bericht zo populair is, hebben we een speciale profielwerkstuk-pagina met meer en uitgebreidere suggesties aangemaakt.

Vul je eigen waterstofballon

Zet de veiligheidsbril maar op, knoop je labjas dicht en trek handschoenen aan. Het is tijd voor wat haardkoor chemie. We gaan namelijk onze eigen Hindenburg maken. Hopelijk zonder de bijbehorende vlammenzee. Dat moet haast ook wel, want waterstof brandt met een onzichtbare vlam.

Ter zake. In deze doe het jezelf gaan we een ballon vullen met waterstof. Dit betekent dat we op een of andere manier waterstof moeten produceren. Dat kan natuurlijk met elektrolyse, maar dat is saai, langzaam en de kans dat je thuis een toestel van Hofmann hebt staan is ook klein. Tijd voor iets spectaculairders.

Let op: er staat niet voor niets aan het begin van dit stukje dat je een veiligheidsbril op moet zetten. Onderstaande reacties zijn enorm exotherm en je wilt echt geen kokende zuren of basen in je oog, op je handen of op je kleren. Scholieren: vraag je docent om hulp.

Hindenburg zeppelin gevuld met waterstof. Hetgeen dat je ziet branden is vooral de coating van de ballon, omdat het warme waterstof veel te vluchtig is en het brand met een kleurloze vlam.
Hindenburg zeppelin gevuld met waterstof. Hetgeen dat je ziet branden is vooral de coating van de ballon, omdat het waterstof veel te vluchtig is en brandt met een kleurloze vlam.

Calciumhydride

Calciumhydride, CaH2, is een metaalzout dat soms wordt gebruikt wanneer er iets moet worden gedroogd. Het reageert zeer heftig met water, waarbij waterstof ontstaat:

CaH2 (s) + 2 H2O (l) → Ca2+ + 2 OH + 2 H2 (g)

Uitvoering: Breng in een afzuigerlenmeyer, rondbodemkolf of iets anders met twee openingen een flinke hoeveelheid water (maar niet teveel, anders spettert er allemaal water de ballon in). Voeg een brokje calciumhydride toe, maar doe de ballon er nog niet direct op. Er zit nu namelijk nog allemaal lucht in, en dat wil je niet in de ballon hebben. Maak als de reactie afgelopen is de ballon vast en voeg nog een stukje calciumhydride toe. Houd de ballon goed vast terwijl je de stop er snel op doet.

De reactie verloopt heel snel, dus het geheel vereist enige oefening.

Aluminium en natronloog

Wellicht heb je geen calciumhydride bij de hand. Een alternatieve methode is om natronloog te laten reageren met aluminium:

2 Al (s) + 6 OH → 2 AlO33- + 3 H2 (g)

Deze reactie verloopt een stukje langzamer dan de vorige. Daardoor kun je gewoon wat natronloog in een erlenmeyer doen, aluminium erbij en rustig de ballon erop zetten.

Natronloog (1 — 4M) heeft je docent scheikunde ongetwijfeld staan. Aluminium kun je halen uit bijvoorbeeld de onderkant van een blikje frisdrank of aluminiumfolie. Deze reactie werkt overigens ook met zoutzuur.

Voor de slimmeriken: de reactie is inderdaad hetzelfde als de beruchte crofty bomb.

De klassieker: zink en zoutzuur

De oldskool methode om op labschaal waterstof te maken, is met zink en zoutzuur:

Zn (s) + 2 H+ → Zn2+ + H2 (g)

Niet alleen is zink goedkoper dan aluminium, ook komt er bij deze reactie minder warmte vrij. Samen met het toestel van Kipp was dit vroeger dan ook een gemakkelijke manier om ter plekke waterstofgas of CO2 te maken — dit laatste maak je door soda in plaats van zink te nemen.

Zetten jullie wel “scheikundejongens.nl” op jullie ballon als jullie hem oplaten?

Kristallen kweken

Tijd voor weer een leuke doe-het-jezelf. In deze post gaan we je uitleggen hoe je zelf een kristal kunt maken. Maar eerst zullen we uitleggen wat een kristal nu eigenlijk is, en wat daar zo bijzonder aan is.

In ons dagelijkse leven komen we drie soorten stoffen tegen: vaste stoffen, vloeistoffen en gassen. In vloeistoffen en gassen bewegen de moleculen of atomen kriskras door elkaar: er is alleen maar wanorde. In een vaste stof bewegen de moleculen niet meer kriskras door elkaar, ze staan stil. Voor een vaste stof zijn er in principe twee vormen: kristallijn en niet-kristallijn. Een niet-kristallijne vaste stof heeft nog wel de wanorde van de vloeistof, maar de moleculen/atomen bewegen niet meer. Niet-kristallijne vaste stoffen worden ook wel eens een glas of amorfe vaste stof genoemd. Voorbeelden van een glas zijn ‘gewoon glas’ (duh! Zoals in ruiten en theeglazen), plastics, hars en lijm.Kristalstructuur van keukenzout, NaCl.

In een kristal zitten de moleculen niet alleen stil, ze zijn ook nog eens netjes geordend zoals op het plaatje hiernaast. Dit plaatje stelt een kristal van keukenzout (NaCl) voor. De paarse bolletjes zijn de Na+ ionen, de groene de Cl ionen. Niet alleen keukenzout vormt kristallen, ook suiker (kandijsuiker) of water kunnen dat (dan noemen we het sneeuw, zie afbeelding hieronder). Een leuk feitje: kristalglas is helemaal geen kristal, maar amorf glas wat mooi glinstert doordat het een hoge brekingsindex heeft. Dit laatste wordt bereikt door toevoeging van veel loodoxide. En lood is altijd giftig. Eet dus geen kristalglas.

Gelukkig hoef je helemaal niet te wachten tot het weer gaat sneeuwen voordat je weer plezier kunt hebben met kristallen. Je kunt namelijk ook zelf een kristal groeien. Het makkelijkste gaat dit met een aluin, een groep van zouten waarvan kaliumaluminiumsulfaat [KAl(SO4)2] de bekendste is. Aluin is te koop bij elke lokale drogist: het wordt gebruikt als bloedstelpend middel tegen bijvoorbeeld scheerwondjes.

Kristal van chroom-aluin, KCr(SO4)2. Chroom(III) zorgt voor de kleur.Je eigen kristal groei je als volgt:

  • Eerst verwarm je wat water (het liefst demiwater). Hierin los je zoveel mogelijk aluin op.
  • Als er niets meer oplost, voeg je nog een beetje extra water toe en filtreer je eventuele restjes aluin of stofjes eruit. Dit kan bijvoorbeeld met een koffiefilter.
  • Nu laat je de oplossing een paar dagen staan met een deksel er losjes op (de deksel is tegen stof). Als de oplossing afkoelt, kan er gaandeweg steeds minder aluin opgelost blijven en krijg je allemaal kleine kristallen.
  • Haal de kristalletjes uit de oplossing (bijvoorbeeld met een koffiefilter, in elk geval niet met je vingers) en zoek de grootste uit. Deze ga je nu verder groeien. Je maakt weer een verzadigde aluinoplossing, en legt het kristal daar in. Je kunt ook een touwtje om het kristal binden en het kristal mooi in het midden van de oplossing hangen, maar dan krijg je wel een touwtje in het kristal.
  • Wanneer de oplossing afkoelt, zal het kristal steeds verder aangroeien. Dit proces kun je een aantal keer herhalen, en zo kun je hele grote kristallen groeien.

Het is bij het aangroeien van kristallen heel belangrijk dat je zorgt dat er geen stofjes in de oplossing komen. Anders zal het kristal gaan groeien op het stof, in plaats van op het kristal dat je al had. Dek de oplossing dus goed af. Het is tegelijk ook belangrijk dat je het groeien niet doet in een afgesloten potje, want dan kan het potje breken wanneer de oplossing afkoelt.

Voor meer details en voor foto’s, check thuisexperimenteren.nl

Sneeuwkristallen

Veel succes met het groeien van je kristal! We zijn benieuwd naar jullie resultaten, dus laat een reactie achter. Scheikundejongens houden van reacties.

Droge waterplanten

Kijk eens naar onderstaande plaatjes. Het zijn foto’s van twee waterplanten in de vijver in mijn achtertuin, waar ik met een plantenspuit een beetje water op heb gespoten. De bovenste plant is een gele lis, de onderste een kalmoes. Wat valt je op?

Gele lis
Andere waterplant

Verder lezen Droge waterplanten