Het perspectief rondom een nucleaire ramp

Deze dinsdagochtend las ik in de nrc.next het volgende:

“Energie (…) en de wereld [zijn] nog steeds te belangrijk om over te laten aan deskundigen. Een debat van ondeskundigen over technologie en wetenschap is nodig, niet om specialistische oplossingen te verzinnen, maar om politieke doelen te formuleren en risico’s af te wegen.”

— Marjolein Februari, nrc.next, 22 maart 2010

Ik kan wel huilen. Dit is zo dom op zoveel verschillende niveaus, dat ik niet weet waar ik moet beginnen. Het stuk gaat over de correlatie tussen politieke kleur en levensstijl (zoals een stropdas of een hanenkam). En of we het nu juist wel of niet over kernenergie als oplossing mogen hebben.

We vinden het verschrikkelijk wat er in Japan is gebeurd, maar laat dit duidelijk zijn: er zijn niet veel constructies op aarde die een aardbeving met een kracht van 9,0 op de schaal van Richter kunnen weerstaan. Maar toch zijn er wel verdacht veel artikelen in de krant, bloggers op Internet en nieuwsberichten op radio en tv, die hun zorgen tegen kernenergie willen uiten. Natuurlijk is het altijd goed om een uitgebreide afweging te maken als het gaat om gevaarlijke technologie, maar deze timing is ronduit belachelijk.

Toen er een olieramp in de Golf van Mexico plaatsvond — is die bende trouwens al eens opgeruimd? Hoor ik ook nooit meer wat over — toen hoorde ik niemand over het verbieden van het gebruik van fossiele brandstoffen voor auto’s. En als er een vliegtuig neerstort, houdt dat de uitbreidingen van vliegvelden ook niet tegen. Maar als er zich een natuurramp voordoet, waartegen niets of niemand opgewassen is, gaan we twijfelen aan kernenergie.

Dan nog de inhoud van de berichtgeving: in heel Tokio schijnt geen enkele geigerteller meer te koop zijn. En waarom niet? Zodat mensen zelf kunnen meten dat de berichtgeving van de overheid klopt. Er is daar inderdaad 0,003–0.005 µSv aan straling te meten. En hoe weinig schadelijk dat is, wordt prachtig uitgelegd in dit Kennislink artikel. Laten we niet vergeten dat beton ook radioactief is (70 µSv/jaar) en dat de hoeveelheid kosmische straling waaraan je wordt blootgesteld in een vliegtuig in de orde van ~3–5 µSv/uur is. Tot slot: er wordt pas daadwerkelijk kanker aan straling gekoppeld vanaf 100 mSv/jaar.

De ramp in Japan wordt samengeperst tot de problemen met de kerncentrales. Er werd op een goed moment zelfs gesproken over een melt down van de reactor. Heeft iemand enig idee wat dat is? Als je die kennis uit een film hebt, zou ik niet willen stellen dat je enig idee hebt waar je het over hebt. Supersorry. Het heeft niks te maken met grote explosies, enge groene straling of al dat engs. Wat er gebeurt is dat de reactor oververhit en smelt. Meer niet.

“Maar er kan een kernexplosie plaatsvinden!” Nee helaas, weer mis. Er zijn twee dingen heel belangrijk bij het maken van een atoombom: kritische massa en isotopensamenstelling. En beiden zijn extreem ingewikkeld en duur om in een bom-vorm voor elkaar te krijgen, en beiden zijn niet aanwezig in een kernreactor. Er kan dus onmogelijk een kernexplosie plaatsvinden in de reactoren in Japan. Tenzij iemand besluit er een atoombom op te gooien, maar dan moeten we ons opeens over andere dingen zorgen gaan maken.

Samenvattend wil ik alle journalisten en essayisten die zich druk maken, willen vragen om zich te laten informeren door een expert voordat ze ergens over schrijven. En blijf vooral rustig. Ik weet dat al die hitsigheid lekker verkoopt, maar het is niet waar wat er opgeschreven wordt. Tot slot wil ik jullie alsnog aanraden om het verschrikkelijk goeie Kennislink artikel over radioactiviteit te lezen en te luisteren naar de wijze woorden van The Periodic Table of Videos:

Fotowedstrijd door Kennislink

Omdat de Stokes–Einstein diffusie-coëfficient van kubussen niet exact te bepalen is, heb ik deze week wat minder tijd gehad voor de Scheikundejongens. Desalniettemin wil ik jullie het volgende niet ontnemen.

Volgende week zaterdag, 12 februari, opent Museum Boijmans van Beuningen de tentoonstelling “Schoonheid in de wetenschap.” Naar aanleiding daarvan heeft Kennislink een fotowedstrijd uitgeschreven. Heb jij een mooie foto van een mooi, wetenschappelijk verschijnsel? Beschik je over het auteursrecht van die foto? Wil je kans maken op twee vrijkaartjes voor de tentoonstelling, plus het prachtige fotoboek “Manufactured Landscapes” van Edward Burtynsky? Lees de voorwaarden op Kennislink en doe mee met deze wedstrijd.

Kennislink heeft bij wijze van inspiratie hier al wat mooie foto’s geplaatst. Hieronder vind je twee foto’s die wij misschien wel gaan inzenden.

Een ferrofluid laat spikes zien die zich richten langs de magnetische veldlijnen. © Mark Vis.
Foto van de binnenkant van het ESRF. Klik voor supergroot. © Mark Vis.

Weet jij nog mooie wetenschapsfoto’s? Laat het ons hieronder weten. En als ze van jezelf zijn, stuur ze op.

Harry Potter zingt The Elements song

Okay okay, het is de acteur die Harry Potter speelt, Daniel Radcliffe, maar MAJOR NERD ALERT!

Als je dit vet vindt, bekijk dan ook onze Nederlandse en Japanse versies.

Edit: Als je gister ook in Utrecht was en je vroeg je ook zo af waarom het zo mistig was: er werd geroddeld dat Daniel Radcliffe gistermiddag in het Spoorwegmuseum was, vanwege de première van de nieuwe Harry Potterfilm (7.1).

Via Central Science en de Kennislink twitter

Nanotechnologie is ook gewoon scheikunde

Deze column verscheen gister op Kennislink.

Sinds een decennium of wat is nanotechnologie hartstikke hip. Volgens definities betreft nanotechnologie alle wetenschap die sleutelt aan materialen waarbij één of meerdere dimensies tussen 1 en 100 nanometer liggen. Een nanometer (nm) is een miljoenste millimeter. Bij het maken van nanomaterialen komt vaak scheikunde kijken, terwijl we voor het verklaren van de eigenschappen juist natuurkunde nodig hebben. Maar nanotechnologie is zo verweven in allerlei natuurwetenschappen dat het zich lastig laat indelen in klassieke termen als natuur- en scheikunde. Om die reden wordt nanotechnologie ook wel een vakgebied op zich genoemd.

Het speciale aan de nanomaterialen is dat hun eigenschappen niet alleen afhangen van de chemische samenstelling, maar ook van hun grootte. Een bekend voorbeeld hiervan is goud. Goudbolletjes van enkele tientallen nanometer zijn niet meer goudkleurig, maar juist rood. Hoewel men hier destijds geen weet van had – en het toen zeker nog geen nanotechnologie heette – werd dit in de Middeleeuwen al gebruikt om glas in lood een rode kleur te geven. In 1847 was het de Britse natuur- en scheikundige Michael Faraday die er achter kwam dat de rode kleur werd veroorzaakt door de grootte van de goudbolletjes.

Niks nieuws onder de zon dus, zou je zeggen. Dat er momenteel sprake is van zowel een nano-angst als een nano-hype vinden we dan ook behoorlijk vreemd.

Een mooi voorbeeld van nanotechnologie: quantum dots, bolletjes van halfgeleiders van enkele nanometers groot. Afhankelijk van de precieze grootte zenden de quantum dots onder invloed van UV-straling diverse kleuren zichtbaar licht uit. Afbeelding © Scheikundejongens

Nano-angst

Allereerst die angst. Omdat nanomaterialen nieuwe en soms onbekende eigenschappen hebben, kúnnen ze gevaarlijk zijn. Een schoolvoorbeeld van een gevaarlijk – maar ‘puur natuur’ – nanomateriaal is asbest. Op basis van de chemische samenstelling had niemand verwacht dat het schadelijk zou zijn. Asbest is een silicaat, maar het glas in je raam bevat ook silicaten. Alleen gaat het bij asbest om vezels van silicaat, met een diameter van ongeveer 10 nanometer. En die blijken door hun vorm bij inademing onder andere asbestose en tumoren te kunnen veroorzaken.

Er bestaat bij velen de angst dat nanotechnologie het ‘nieuwe asbest’ zal worden. Zo gaan er bijvoorbeeld stemmen op om dan maar alle nanomaterialen in consumentenproducten te verbieden. Een belachelijk voorstel natuurlijk, omdat veel bestaande producten ook onderdelen bevatten die ‘nano’ zijn. Eenvoudige voorbeelden zijn de eiwitten in melk en het beschermende laagje aan de binnenkant van een chipszak. Niet alles wat ‘nano’ is, is meteen gevaarlijk. Maar dat moet natuurlijk wél getest worden voor een product op de markt wordt gebracht.

Hoe classificeren we al deze nieuwe, misschien gevaarlijke, materialen nou? Dit is een belangrijke vraag tegenwoordig en we weten niet hoeveel lezingen we daarover inmiddels gehoord hebben. Allemaal moeilijkdoenerij, want we testen toch ook hoe gevaarlijk niet-nanomaterialen zijn? We weten toch ook heel goed dat je methanol maar beter niet kunt drinken maar dat ethanol (met mate) geen bezwaar is? Waarom kunnen we niet gewoon verplicht stellen om ook alle nanomaterialen voor gebruik in consumentenproducten te laten testen? Het probleem is misschien dat de huidige regelgeving geen onderscheid maakt tussen een blok goud en gouden nanodeeltjes, omdat ze dezelfde chemische samenstelling hebben. Maar dat kan niet zo moeilijk op te lossen zijn.

Pas op! Bevat nanodeeltjes! Afbeelding © Kennislink

Nano-hype

Dan die nano-hype. Laatst kwamen we zinsneden tegen als “nanotechnologie ontwikkelt momenteel nanomaterialen (…)” en “nanotechnologie draagt bij aan duurzame energie”. Dat is net zoiets als “thermodynamica ontwikkelt momenteel ijs om over te kunnen schaatsen”. Nanotechnologie is een nieuw vakgebied, maar nanotechnologie ontwikkelt niets zelf. Dat doen nog altijd de onderzoekers.
Op zich hebben we er niets op tegen dat mensen positief zijn over nanotechnologie. Als je veel over goede ontwikkelingen in een vakgebied leest, dan krijg je daar een warm gevoel bij. Dat is logisch. Maar het kan ook te ver gaan. Soms zijn fans van nanotechnologie als de fans van een rockband. Die hebben ook de neiging te vergeten dat er nog andere bands zijn.

Kortom, er zijn een aantal factoren waar de eigenschappen van een materiaal vanaf hangen. Eerst waren dat vooral chemische samenstelling en stofeigenschappen, maar daar is nu iets nieuws bij gekomen. We weten dat nu ook de grootte (of kleinte, als je wilt) van het materiaal belangrijk is. Het klinkt als een open deur, maar dit is waarom nanotechnologie zo anders is. Toch blijft het gewoon wetenschap. En wetenschap is bedacht door mensen, die de natuur willen beschrijven. In een beschrijving van de natuur is geen plaats voor hypes en angsten. Daar telt alleen objectiviteit.